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The Method of Fundamental Solution (also known as the F-Trefftz method or
the singularity method) is an efficient numerical method for the solution of Laplace
equation for both two- and three-dimensional problems. In recent years, the method
has also been applied for the solution of Poisson equations by finding the particular
solution to the nonhomogeneous terms. In general, approximate particular solutions
are constructed using the interpolation of the nonhomogeneous terms by the radial
basis functions. The method has been validated in recent papers. This paper presents
an improvement of the solution procedure for such problems. The improvement is
achieved by using radial basis functions called osculatory radial basis functions.
Such functions make use of the normal gradient at boundary to obtain improved
interpolation. The efficacy of the method is demonstrated for some prototypical
nonlinear Poisson problems and for multiple Poisson equations.c© 2001 Academic Press
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I. INTRODUCTION

The Poisson equation,∇2u = f (x, u), wherex is the position vector andu the depen-
dent variable, is encountered in a variety of modeling situations in heat, momentum, and
mass transfer, among others. Other examples of Poisson type of equations in computational
physics include the Liouville equation, Chandrasekhar–Wares equation, Emden equation
in astrophysics, geometry of conformal metrics, and so forth. The use of conventional
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numerical methods to solve such problems, viz., finite differences or finite elements, in-
volve discretizing the entire domain of interest. For nonregular geometries, the process of
element or grid generation and the associated bookkeeping of the elements and nodes can
prove cumbersome and expensive in the user time and the CPU time, especially for three-
dimensional (or higher) problems. Hence, in the past decade, there has been considerable
interest to develop mesh-free methods to solve the nonlinear Poisson equation. Most com-
mon among these mesh-free methods is the dual-reciprocity boundary element method or
DRBEM as an abbreviation (for example, 1–4). Here, the problem is reduced to the solution
of the Laplace equation by finding approximate particular solutions to the nonhomogeneous
terms. The Laplace equation, in turn, can be solved by a boundary-only discretization using
the boundary element methods (BEM). The BEM, in turn, requires the evaluation of the
singular integrals along the boundary. These singular integrations are easy to perform for
two-dimensional problems but can be computationally expensive for the three-dimensional
case. As an alternative, one can adopt a solution procedure called theMethod of Funda-
mental Solutions (MFS)to solve the Laplace part of the problem. The MFS belongs to
the general class of boundary collocation methods [5], and in this procedure, the solution
is represented as a set of single layer potentials emanating from “source” points located
outside the solution domain. The boundary conditions are satisfied by simple boundary
collocation or a least square fitting of the boundary data. In this procedure, one avoids the
problem of evaluation of the singular integrals needed in the boundary element method and
in the dual-reciprocity methods. Hence, the procedure is computationally more efficient
than the DRBEM. Some pertinent prior references on the MFS method are summarized in
the following paragraph.

The Method of Fundamental Solutions (MFS) has been extensively applied for the so-
lution of the linear partial differential equations. Some key references include the Laplace
equation [6], the biharmonic equations [7], elasticity [8], fluid mechanics [9], and the linear
diffusion reaction equations [10]. The method was also applied to the solution of nonho-
mogeneous linear Poisson equations (for example,f = f (x) by combining the MFS with
the particular solutions to the nonhomogeneous terms [11]. The particualr solutions can
be evaluated analytically for certain forms of the function,f = f (x). More recently, the
method has also been extended to solve a nonlinear Poisson problem (the thermal explo-
sion problem) by Chen [12] using the approximate particular solutions and a simple Picard
iteration to handle the iterations needed for the nonlinear terms. The solution scheme for
nonlinear problems was improved by Balakrishnan and Ramachandran [13] who introduced
the concept of a Matrix of Particular Solutions. Improved iterations with the direct Newton–
Raphson method could be done by this approach and the applicability of the method to a
large class of nonlinear Poisson problems was demonstrated [13]. These studies [12, 13]
used the interpolation using the radial basis functions (RBF) for the representation of the
Poisson terms and for the evaluation of the particular solution. The RBF interpolation uses
only the function values at chosen points in the domain called as the knots or the centers.
Additional information on the values of the normal gradient at the boundary is available or
needs to be computed in most cases as the part of the solution for these classes of prob-
lems. The RBF approximation can be improved by using these information on the normal
gradients. This concept was introduced by Ramachandran and Karur [14] in the context
of the dual-reciprocity boundary element method, and the basis functions which also fit
the boundary values of the normal gradients were referred to as the osculatory radial basis
functions (ORBF). The concept can be viewed as an extension of the familiar spline fitting
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or the Hermite interpolation commonly used in one-dimensional data fitting. The ORBFs
provide additional degrees of freedom, thereby permitting a more accurate interpolation for
the same number of interior knots. The purpose of the present paper is to demonstrate the
ORBF interpolation in the context of the MFS for nonlinear Poisson problems and to docu-
ment the improvements in the solution as a result of using this approach. The layout of the
paper is as follows. In Section II, a brief synopsis of the Method of Fundamental Solutions
for nonlinear Poisson problems is presented in order to provide the necessary background.
In Section III, we present the concept of osculatory interpolation and its implementation in
the method of fundamental solution. Results for nonlinear Poisson problems with uniform
and mixed boundary conditions are presented in Section IV, and the concluding Section V
summarizes the key findings.

II. THE PARTICULAR SOLUTION METHOD

Consider the Poisson equation, to be solved over a domainÄ in R2 or R3 with enclosing
boundary0,

∇2u = f (x, y, z, u) in Ä (1)

with the following mixed boundary conditions imposed over the boundary0,
Dirichlet:

u = ū over01 (2a)

Neumann:

∂u

∂n
= p = p̄ over02, (2b)

where01+ 02 = 0 and the bar denotes prescribed values.
Also, the more general case of Robin boundary conditions can also be considered with,

∂u

∂n
+ hu= −huo over02, (2c)

whereh is the heat/mass transfer coefficient, anduo is the prescribed value ofu of the
surroundings. This boundary condition needs only minor modifications to the solution
scheme.

In the method of particular solutions, the solution is expressed as the sum of the homoge-
nous problem with a set of modified boundary conditions and a particular solution which
satisfies no specific boundary conditions, i.e.,

u = v + w, (3)

where the functionv satisfies the Laplace equation,

∇2v = 0 inÄ, (4)

and the functionw is a particular solution defined as the solution to

∇2w = f in Ä. (5)
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Thus, the problem is solved by using two separate approximations forv andw as suggested
by Eq. (3). The solution to the homogeneous part,v, can be obtained by the method of
fundamental solutions. Herev is expressed as,

v =
nb∑

i=1

ai Gi , (6)

whereGi is the fundamental solution to the Laplace equation with the pole or source located
at a pointi (which is outside the domain under consideration). The coefficientsai are found
by boundary collocation, i.e., making Eq. (6) satisfy the (modified) boundary condition on
the variablev atnbnumber of boundary points. The fundamental solutionsGi are standard
and are given as follows: For three-dimensional problems,Gi = r−1

i corresponding to the
source pointi , whereri is the Euclidean distance from the source (or pole)i . Similarly,
Gi = − ln ri for two-dimensional problems.

A slight modification is needed for two-dimensional problems. Here, thea constant term
is needed in the expansion as pointed out by Golberg and Chen [11]. Hence, the number of
source points is taken as one less than the number of boundary collocation points and the
solution forv is represented as

v = ao +
nb−1∑
i=1

ai Gi . (6a)

The next part of the approximation is to evaluate the particular solution,w. In order to
do this, the forcing functionf is approximated overÄ using suitable basis functions. For
irregular geometry, the radial basis functions (RBF) have proven to be most versatile for
interpolation at scattered data points. A number of different types of RBFs have been used
in the context of solution of partial differential equations [15–21]. These include linear
distance functions, thin plate splines, multiquadrics, and RBFs with compact supports. In
general, the interpolation of the nonhomogeneous termf in terms of a set of RBF functions
φk can be defined as

f =
nt∑

k=1

αkφk, (7)

whereαk are a set of expansion coefficients obtained by interpolating at a total ofnt nodes
in accordance to the following equation

f j =
nt∑

k=1

φ jkαk j = 1, 2, . . . ,nt, (8)

whereφ jk is the functionφk evaluated at any pointj . The corresponding matrix denoted as
φ̃ is also know as the interpolation matrix.

Equation (8) can be expressed in vector–matrix from,

⇀

f = 8̃⇀
α or

⇀
α = 8̃−1 ⇀

f , (9)

which provides the conditions needed for the calculation of the expansion constants,αk.
The particular solution,w which satisfies Eq. (5), is obtained from the particular solutions
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to each of theφk functions, and can be expressed as

w =
nt∑

k=1

αkψk, (10)

whereψk is given by

∇2ψk = φk. (11)

The explicit analytical forms forψk can be evaluated for various types of RBFφk. This
makes the computation of the approximate particular solutions a simple task.

Now, since the solutionu = v + w for computational efficiency, the two parts of the
solution can be combined, and the composite solution can be expressed as

u =
nb∑

i=1

ai Gi +
nt∑

k=1

αkψk. (13)

Using the inverse transformation in Eq. (9) and collocating at all the (nt) points one can
rewrite this equation in vector form as

⇀

u = G̃
⇀

a + 9̃8̃−1 ⇀

f (14)

or

⇀

u = G̃
⇀

a + β̃ ⇀

f , (15)

whereβ = ψ̃φ̃−1 is called the Matrix of Particular Solutions. Equation (15) is then the
compact approximate analytical representation of the solution. The matricesG̃ andψ̃ are
defined in an analogous manner as the matrixφ̃.

For a Dirichlet problem, one choosesnbcollocation points on the boundary0 andnt-nb
interior points andnb (notenb-1 in 2D) source points outside the boundary. The boundary
conditions are substituted into Eq. (15) and the equations are rearranged and solved for the
unknowns. These unknowns are the boundary fitting coefficient vector,

⇀

a, and the value of
the variableu at the interior points. The resulting equations are nonlinear iff is a nonlinear
function ofu and are solved by a modified Newton–Raphson iteration. If at certain boundary
points, the Neumann conditions are specified, then Eq. (15) is differentiated to obtain an
expression for∂u/∂n. The known value of∂u/∂n is substituted for these points, and the set
of equations are correspondingly augmented since the value ofu is also an unknown at this
point. More details of the method can be found in [13]. We now proceed to the discussion
of osculatory interpolation and its implementation in the above formulation.

III. OSCULATORY INTERPOLATION FOR PARTICULAR SOLUTIONS

Ramachandran and Karur [14] introduced the concept of osculatory interpolation using
radial basis function. Here the interpolation of the functionf is carried out using not only the
nodal values of the dependent variable but also the normal gradient at the boundaries. This
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requiresnbadditional degrees of freedom for satisfying the slope conditions at thenbboun-
dary points. The interpolating equations for the forcing functionf is now written as

f =
nt∑

k=1

αkφk +
nb∑

k=1

δkϕk, (16)

where the additional set of interpolating functionsϕk, which are linearly independent of
φk, are introduced, andδk are the corresponding additional interpolating coefficients. The
linear independence between the two functionsφk andϕk is needed since both the inter-
polating and osculating conditions are applied at the same boundary point. The resulting
matrices are found to be nonsingular if the two functions are chosen as linearly inde-
pendent. The osculatory interpolation is also known as the Hermite interpolation. The
theory of Hermite interpolation using RBF is however not well established and only lim-
ited studies appear to have been published [22–24]. In these studies, the osculatory and
interpolatory conditions are applied at different points and hence two separate sets of
functions are not required. More theoretical basis for Hermite interpolation and, in par-
ticular, the invertability of the coefficient matrix (the matrix appearing in Eq. 19 later in
the text) should be examined in future studies. In this paper we demonstrate the use of
this method only by computational experiments and not on a functional analysis frame-
work.

The coefficientsαk andδk are in Eq. (16) computed using both interpolation and osculation
conditions as discussed below. At all the interpolating nodes (boundary and interior), we
set f = fi , the nodal value of the forcing function, i.e.,

fi =
nt∑

k=1

φikαk +
nb∑

k=1

ϕikδk (i = 1, 2, . . .nt). (17)

At all the nb boundary points, the additional osculation conditions are imposed, i.e.,

∂ f

∂n

∣∣∣∣
i

=
nt∑

k=1

(
∂φk

∂n

)
i

αk +
nb∑

k=1

(
∂ϕk

∂n

)
i

δk (i = 1, 2, . . .nb). (18)

The equations can be setup in matrix form as shown below in Eq. (19) and the coefficients
αk andδk are given by Eq. (20):(

f
⇀

f ′
⇀

)
=
(
φ̃ ϕ̃

φ̃′ ϕ̃′

)(
α
⇀

δ
⇀

)
(19)

(
α
⇀

δ
⇀

)
=
(
φ̃ ϕ̃

φ̃′ ϕ̃′

)−1(
f
⇀

f ′
⇀

)
. (20)

This gives us the requisite coefficients for the interpolation scheme. Note that in the above
equations the symbol′ represents the normal derivative at the boundary points.

The particular solutions for the osculation interpolation can be defined in terms of two
functions,ψ , η, satisfying

∇2ψk = φk (21)

∇2ηk = ϕk. (22)
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The solution to the problemu is now given by,

u =
nb∑

i=1

ai Gi +
nt∑

k=1

ψkαk +
nb∑

k=1

ηkδk, (23)

and the normal gradientp is given by

p = ∂u

∂n
=

nb∑
i=1

ai
∂Gi

∂n
+

nt∑
k=1

∂ψk

∂n
αk +

nb∑
k=1

∂ηk

∂n
δk. (24)

Substituting forαk andδk from Eq. (20), we get the required collocation equations,(
Eu
Ep

)
=
[

G̃

G̃′

]
⇀

a+
[
ψ̃ η̃

ψ̃ ′ η̃′

](
φ̃ ϕ̃

φ̃′ ϕ̃′

)−1( Ef
Ef ′

)
. (25)

Equation (25) is now the representation of the solution when using the ORBF for con-
structing the particular solution and now replaces Eq. (15). Note that the function values at
all points (boundary+ interior) and the normal gradients at the boundary points are now
included in the computation.

For solution purposes, the nonlinear termf is expressed in a quasilinear form,k1+ k2u,
where, the

k1 = f (um)− um
d f

du

∣∣∣∣
um

k2 = d f

du

∣∣∣∣
um

,

whereum is the value ofu at the current level of iteration. The linearized form is substituted
into Eq. (25) and the system of linear equations is solved iteratively to convergence. More
details of the procedure can be found in Ramachandran and Karur, [14]. The procedure
is similar to a Newton–Raphson method. For any given problem, the equations for thent
nodal values ofu andnb normal gradients at the boundary are assembled and solved for
the unknown coefficientsai and the unspecified boundary values ofu and fluxesp and in
addition the (nt-nb) interior values ofu. Note that the boundary gradients (at the Dirichlet
points) are directly calculated as a part of the solution and not in a postprocessing scheme
unlike the earlier method. The test cases and results for a few prototypical problems will
now be discussed in the next section.

The solution accuracy often depends on the choice of the RBFs. A number of papers
have addressed this issue but there is no clear consensus on the choice of the functions.
Multiquadrics have been used for many applications and was used in our earlier study with
unaugmented RBFs [13]. However, the results are often sensitive to the choice of the shift
parameter. Hence, we used the thin plate splines and the cubic function as the RBFs here.
These functions are defined below:

Thin plate spline:φi = r 2 log(r )

Cubic:ϕi = r 3
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The corresponding particular solutions are as follows:
Particular solutions for the cubic RBF (r3)

ηi = r 5

25

Particular solutions for Thin Plate Splines (r2 log r)

ψi = r 4 logr

16
− r 4

32

Other choices of RBFs could also be made and often the choice is dependent on the
nature of the function being interpolated. A recent study [25] indicates that cubic function
and higher order TPS may be a reasonable choice for a wide range of problems. Also, the
use of compactly supported RBFs is also being used [26] and these functions could also be
used for the interpolation. Further studies should address these issues.

IV. TEST CASES AND RESULTS

In this section we demonstrate the efficacy of the solution procedure discussed earlier in
Section III for some typical problems. The governing equation is chosen as: a power law
form: f (u) = M2un for test case 1, and more complex kinetic rate forms are examined
in case 2. Uniform Dirichlet boundary conditions are used for these cases. The solution
procedure for a mixed boundary conditions is tested in Case 3 for a power law rate form.
Case 4 shows the application of the method to a system of differential equations. In these test
cases, a simple circular geometry is used, and this geometry is sufficiently representative to
demonstrate the grid free nature of the method. However, in order to show the application
for a more irregular geometry, the case of a trilobe catalyst is considered in test case #5.

For test cases 1 to 4, the circle radius is chosen as 1.0 and the 16 boundary nodes, and 60
interior nodes were used as the base case for the discretization. The location of the nodes
is shown in Fig. 1. The number of boundary nodes were increased to 32 for a finer set
of collocation points, and the internal nodes were also correspondingly increased to 120.
These results on a finer set of nodes were used to demonstrate the discretization errors and
the convergence of the method. The finer mesh used is shown schematically in Fig. 2.

The source points were placed on a circle of radius 1.4 in a uniform manner. The source ra-
dius was also varied in order to test the effect of this parameter of the solution. It was found, in
general, that the results are not sensitive to the source radius within a wide range of 1.4 to 5.0.

Case 1: Power Law form: Dirichlet Conditions

The function f (u) = M2un is used in cases 1 and 3. Here, the parameter,M , is called
the Thiele modulus in chemical engineering literature and represents the ratio of kinetic to
transport resistances in the domain. The larger the Thiele modulus, the steeper the profiles of
the dependent variable, and for very large Thiele moduli, a boundary layer with a thickness
of the order of(1/M) is present. In such cases, traditional methods, such as finite elements,
require a fine discretization of the region near the boundary layer for increased accuracy.
Here we demonstrate that even a coarse mesh can provide reasonably accurate results when
osculatory interpolation is used.
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FIG. 1. Coarse node placement for the circle.

Case 1a: Power Law: first order case(n = 1)

We first consider a first-order reaction (n = 1) with Dirichlet boundary conditions for
which case an analytical solution is available, viz.,

u = I0(Mr )

I0(M)
in Ä (27)

FIG. 2. Fine node placement for the circle.
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TABLE I

Solution for n = 1, M = 100; Comparison of Accuracy

of Numerical Results

Concentration Profiles
TPS Coarse Set

Locationr Coarse Set Fine Set Analytical No Osculation

0.9 0.3936 0.3895 0.3884 0.3853
0.7 0.0714 0.0621 0.0599 0.0662
0.5 0.0112 0.0094 0.0097 0.0111
0.25 0.0014 4.26× 10−4 0.0017 0.0019
0.0 5× 10−4 2× 10−4 3.55× 10−4 1.35× 10−4

Gradient at 9.5634 9.4935 9.486 9.6596
x = 1

∂u

∂n
= M I1(Mr )

I0(M)
on0. (28)

The comparison of the solutions are shown in Table I along with those without osculatory
interpolation using TPS. As one can see, the gradient values using osculatory interpolation
are more accurate than with traditional RBF interpolation. The concentration values are
also shown in Table I and compared with an analytical solution. The source points in this
case were placed on a circle center (0, 0) and radius 1.4. The source radius was also varied
in order to test the effect of this parameter of the solution. It was found that the results are
not sensitive to the source radius as indicated earlier in the text.

Case 1b: Power Law: Second order reaction(n = 2)

The case of second-order reaction (n = 2) is considered next and the results are presented
in Table II. Here the solution is compared with the numerical solution by a 1-D code BEM1D
(Ramachandran, [2]) which is considered to be very accurate for comparison purposes. It is
seen that both the concentration profiles and the fluxes are close to the BEM1D solution. The
use of regular TPS without osculation predicted the same concentration profiles but predicted
the flux with an error of about 6%. This shows some advantage of using the osculatory

TABLE II

Results for a Second-order (n = 2) Reaction,M = 100

TPS Coarse Set
Coarse Set Fine Set BEMID Values No Osculation

X Concentration Values

0.90 0.5486 0.5289 0.5235 0.5230
0.70 0.2713 0.2480 0.2260 0.2494
0.50 0.1458 0.1258 0.1335 0.1423
0.25 0.0962 0.0783 0.0916 0.0991
0.00 0.0800 0.0689 0.0803 0.0846

Gradient at 7.8564 7.7264 7.7525 8.1459
x = 1
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TABLE III

Solutions for Exponential and Substrate Inhibited Rate forms;

Dirichlet Conditions

Rate form→ Liouville equation Thermal explosion Substrate inhibition
Locations f= 5 exp(−u) f = −exp(u− 1) f = 1040u/(1+ 50u+ 1000u2)

u at r= 0.9 0.8589 1.0568 0.9438
u at r= 0.7 0.5964 1.1559 0.8445
u at r= 0.0 0.1127 1.3176 0.6796
p at r= 1.0 1.4332 −0.5900 0.5821

interpolation. In most problems, the information on the boundary gradients is needed and
the method proposed here calculates these quantities directly as part of the solution.

Case 2: Dirichlet Conditions: Complex Rate Models

The computer program was also tested for various nonlinear rate forms which are some
prototypical problems in physics and engineering. Results for the following three cases are
presented in Table III. For all cases, the source points were on a circle center (0, 0) radius
1.4 and the node placements shown in Fig. 1 were used in the computations. The parameter
values were chosen so that comparison with other numerical method could be done.

Case 2.1: Liouville equation.Here the rate function is chosen as

f = λ2

8
exp(−u). (29)

This equation is encountered in many physical situations. Here,λ2 = 40 was used for
numerical studies. The results shown in Table III were compared to an earlier study by Liao
and Zhu [27] and the agreement was verified.

Case 2.2: Thermal explosion problem:

f = −exp(u− 1). (30)

This represents a situation with an exponentially increasing thermal source in a confined
space and the solution to this problem is needed for a safe design of combustion and other
exothermic processes. The numerical results are in agreement with other computed results.

Case 3: Substrate inhibition kinetics:

f (u) = M2 u/(1+ αu+ βu2). (31)

This problem is a representation of enzyme catalyzed biochemical reaction. The parameters
chosen wereM2 = 1040,α = 50, andβ = 1000, and the problem has multiple steady
states here. The results shown in Table IV reproduced one of the steady states accurately.
Bifurcation studies using this method in combination with programs for continuation and
bifurcation analysis such as AUTO [28] can be done to check if all the steady states are
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TABLE IV

Gradient and Concentration Values along the Boundary

for Test Case #3,n = 2, M = 100

Angular Location Fine Set Coarse Set

Case 1: Gradient Values
0.0982 5.198
0.1963 4.4186a 4.5046
0.2945 3.6392
0.4909 3.7296
0.589 3.7042a 3.5598
0.6872 3.6787
Case 2: Concentration Values
1.669 0.4534
1.7671 0.3589a 0.3557
1.8653 0.2644
2.0617 0.2022
2.1598 0.1899a 0.1807
2.258 0.1775

a Interpolated values.

predicted by this numerical scheme. We have not performed such studies and the more
detailed bifurcation analysis are considered outside the theme of this paper.

Case 3: Mixed Boundary Conditions

Case 3 demonstrates the application of the method for a nonlinear forcing function of
the power law type (n= 2) with Dirichlet and Neumann boundary conditions imposed over
various parts of the perimeter. Here is a unit circle considered with Dirichlet conditions
(u= 1) are imposed over the first and third quadrants and Neumann conditions (p= 0) are
imposed over the rest of the perimeter. It is to be noted that at the junction of the Dirichlet
and Neumann boundaries, the flux is undefined and increases rapidly and is singular at
the junction. Representative profiles ofu for a Thiele modulus of 5.0 are shown for the
geometry of a circle in Fig. 3 for the mixed boundary conditions. The profiles qualitatively
agree with those expected and agree well with other solution methods. To determine the
convergence of the scheme, the results are presented for both the coarse and fine set of
collocation points in Table IV. The solutions calculated by these two sets of nodes are
fairly close to each other, indicating the convergence of the procedure. As a further test,
solutions were also evaluated at interior noncollocation points and compared to each other.
The mean square error over 71 interior noncollocation points was 0.006 and 2.5× 10−5

between the two successive refinements, which is indicative of the convergence of the
scheme.

Case 4: Multiple Differential Equations

To illustrate the efficacy of the procedure for a system of nonlinear equations, we consider
the hypothetical reaction scheme,

A
k1⇔
k2

B
k3⇔
k4

C,
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FIG. 3. Concentration profiles for a second order reaction f= 25u2 with mixed boundary conditions (Case 3).

where the reversible reactions betweenA andB are assumed to be second order and the re-
action fromB toC is assumed to be first order. The governing equations for the independent
speciesA, B, andC (designated as 1, 2, and 3) are given by

∇2u1 = k1u2
1− k2u2

2 (32)

∇2u2 = k3u2+ k2u2
2− k1u2

1− k4u3 (33)

∇2u3 = k4u3− k3u2. (34)

The values of the constants for a chosen simulation werek1 = 5.0, k2 = 1.0, k3 = 5.0, and
k4 = 3.0 and the results are shown in Table V. The solution procedure adopted was to solve
the individual diffusion reaction equations sequentially, with a Newton–Raphson iteration
for each variable. An initial guess foru2 is used to start of the solution of the equation for
A, and the values ofu1, u2, u3 are updated with each iteration until convergence is obtained
(change in sum of the squared error∼1e-9). It may be noted here that the sequential solution
procedure used may not be the best method for the multiple set of algebraic equations and
may not converge in all cases. More efficient convergence schemes can be used but our ob-
jective here was to see how the particular solution method works for a system of differential
equations. This has not been done in any of the earlier studies. The results indicated that
the method is equally accurate for multiple differential equations of the Poisson type. The
approximate particular solution for each individual reactions are dependent on each other
but this coupling appears to produce no spurious numerical problems.

Case 5: Nonregular Geometries

In this case, we demonstrate the efficacy of the method for solving nonlinear problems in
nonregular domains. We consider the example of a trilobe, shown in Fig. 4. In the simulation
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TABLE V

Results of Multiple Reactions (Case 4) with Mixed (D-N)

Boundary Conditions as in Case 3

Boundary Values A B C

p at θ = 0 1.5645 −0.2398 −1.3248
p at θ = π/8 1.1123 −0.2337 −0.8786
C at (0,0) 0.5743 1.0034 1.4223

studies, only a third of the trilobe is interpolated in view of the symmetry of the domain. It
may be noted that splitting the domain into one third does not eliminate the singularity at
the cusp but is merely a convenience for keeping the number of knots small. The two cases
we consider are as follows:

(i) Dirichlet—concentration of 1.0 all over the perimeter, (Fig. 5)
(ii) Dirichlet–Neumann—concentration of 1.0 over some part of the perimeter and no

flux over the remainder of the perimeter. (Figure 5, with Neumann conditions imposed from
point A to point B)

The source points were located at distance of 0.3 from each boundary collocation point.
The concentration profiles for each case with a value of M= 3.0 for a second-order reaction
are shown in Figs. 6 and 7, which agree qualitatively with those expected.

This study illustrates a case where the geometry is complex and the results demon-
strate that the procedure works well for this case thus indicating the usefulness of the
method.

FIG. 4. Illustration of a nonregular geometry—a trilobe (Case 5).
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FIG. 5. Node placement and boundary conditions on a cusp of the trilobe for the case when Dirichlet boundary
conditions are imposed all over the surface of the trilobe.

FIG. 6. Concentration profiles for a trilobe with Dirichlet boundary conditions (one cusp shown) for a second
order reaction (f= 9u2).
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FIG. 7. Concentration profiles for a trilobe with mixed boundary conditions (one cusp shown) for a second
order reaction (f= 9u2).

V. CONCLUSIONS AND SUMMARY

In this paper, we present an extension of a grid-free solution technique, called the Method
of Fundamental Solutions, for solving nonlinear Poisson problems. The solution method
presented here uses a set of nodes in the interior in order to interpolate the function values.
It may be noted that this interpolation is needed only for the purpose of obtaining an
approximate particular solution. Thus, there is no need to approximate any differential
operators (second derivatives for the problem presented here) in the interior, and hence
one source of error associated with the finite difference and finite elements is eliminated.
Further, the nodes can be distributed in any order in the interior and no special bookkeeping
or tracking of inter-element continuity is needed, another advantage of the method. Once the
particular solution is obtained, the problem is reduced to a boundary collocation problem.
This problem is solved by choosing a set of boundary collocation nodes and a corresponding
set of source nodes which are placed outside the domain of solution. The set of collocation
equations are then written for all the function values at the internal and boundary nodes as
well as for the normal gradients at the boundary collocation points. One of the improvements
in this paper is that the normal gradient values are also included in the interpolation of the
function which is then referred to as the osculatory or Hermite interpolation. The osculation
is similar to a spline fitting and permits the function to take the correct slope at each of
the boundary collocation points. This increases the accuracy of the solution. The accuracy
has been demonstrated for a number of test problems. The test problems include systems
with a complex geometry and a case of mixed boundary conditions. Further, the method
has been applied for the first time for the solution a system of differential equations, and
the results are satisfactory. For the solution of problems with larger complex domain, the
method can be easily used in conjunction with the domain decomposition. The domain
decomposition will be very effective here since many of the matrix coefficients (associated
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with, for example, the matrix of a particular solution) can be used in various subdomains.
Further, although the results presented in this paper are for two-dimensional problems, the
method is directly applicable to 3-D or even higher dimensions. The only changes are in
the expressions for the fundamental solution and for the form of the particular solution,
as indicated in the text. Thus, the computer programs for implementing the method is
independent of the dimensionality of the problem which is a unique feature of this method.
The method is also easy to implement in the context of multinode iterative schemes. Here
the particular solution can be extrapolated from the coarse node level to the fine node level.
Thus, corrections at the finer node levels can be done only on the boundary collocation
points which requires a solution of a smaller set of linear algebraic equations. In view of
the many advantage, the use of the method presented in this paper to a variety of important
application problems can be expected in the future.

ACKNOWLEDGEMENT

The authors thank the National Science Foundation for partial support of the work under the Grant CPE
9527671.

REFERENCES

1. P. W. Partridge, C. A. Brebbia, and L. C. Wrobel,The Dual Reciprocity Boundary Element Method(Compu-
tational Mechanics, Southhampton, 1992).

2. P. A. Ramachandran,Boundary Element Methods in Transport Phenomena(Computational Mechanics,
Boston, 1993).

3. S. R. Karur and P. A. Ramachandran, Radial basis function approximation in the dual reciprocity method,
Math. Comput. Model.20, 59 (1994).

4. S. Ahmad and P. K. Banerjee, Free vibration analysis by BEM particular integrals,J. Eng. Mech.112, 682
(1986).

5. I. Herrera, Trefftz Method, inTopics in the Boundary Element Method, edited by C. A. Brebbia (Springer-
Verlag, New York, 1984).

6. G. Fairweather and A. Karageorghis, The method of fundamental solutions for elliptic boundary value prob-
lems,Adv. Comput. Math.9, 69 (1998).

7. A. Karageorghis and G. Fairweather, The single layer potential method of fundamental solutions for certain
biharmonic problems,Int. J. Numer. Meth. Fluids9, 1221 (1989).

8. W. G. Jin, Y. K. Cheung, and O. C. Zienkewicz, Application of the Trefftz Method in plane elasticity problems,
Int. J. Numer. Meth. Eng.30, 1147 (1990).

9. L. C. Nitsche and H. Brenner, Hydrodynamics of particulate motion in sinusoidal pores via a singularity
method,AIChE J.36(9), 1403 (1990).

10. C. S. Chen, Y. F. Rashed, and M. A. Golberg, A mesh free method for linear diffusion equations,Numer. Heat
Trans.B 33, 469 (1998).

11. M. A. Golberg and C. S. Chen,Discrete Projection Methods for Integral Equations(Computational Mechanics,
Southampton, 1996).

12. C. S. Chen, The method of fundamental solutions for non-linear thermal explosions,Comm. Numer. Meth.
Eng.11, 675 (1995).

13. K. Balakrishnan and P. A. Ramachandran, A particular solution Trefftz Method for non-linear poisson problems
in heat and mass transfer,J. Comput. Phys.150, 239 (1999).

14. P. A. Ramachandran and S. R. Karur, Multidimensional interpolation using osculatory radial basis functions,
Comput. Math. Appl.35, 63 (1998).



18 BALAKRISHNAN AND RAMACHANDRAN

15. M. A. Golberg and C. S. Chen, A bibliography on radial basis function approximation,Boundary Element
Commun.7, 155 (1996).

16. R. L. Hardy, Multiquadric equations of topography and other irregular surfaces,J. Geophys. Res.176, 1905
(1971).

17. S. R. Karur and P. A. Ramachandran, Augmented thin plate spline approximation in DRM,Boundary Element
Commun.6, 55 (1995).

18. W. R. Madych, Miscellaneous error bounds for multiquadric and related interpolants,Comput. Math. Appl.
24, 121 (1992).

19. M. A. Golberg, C. S. Chen, and S. R. Karur, Improved multiquadric approximation for partial differential
equations,Eng. Anal. Boundary Elements18, 9 (1996).

20. E. J. Kansa, Multiquadrics—A scattered data interpolation scheme with applications to computational fluid
dynamics,Comput. Math. Appl.19, 127 (1990).

21. Z. Wu, Multivariate compactly supported positive definite radial basis functions,Adv. Comput. Math.4, 283
(1995).

22. F. J. Narcowich and J. D. Ward, Generalized Hermite interpolation via matrix-valued conditionally positive
definite functions,Math. Comp.63, 661 (1994).

23. X. Sun, Scattered Hermite interpolation using radial basis functions,Linear Algebra Appl.207, 135 (1994).

24. Z. Wu, Hermite-Birkhoff interpolation of scattered data by radial basis functions,Approx. Theory Appl.8, 1
(1992).

25. P. W. Partridge, Criteria for selecting approximation functions in the dual reciprocity method,Eng. Anal.
Boundary Elements24, 519 (2000).

26. A. H. D. Cheng, D. L. Young, and C. C. Tsai, Solution of Poisson’s equation by iterative DRBEM using
compactly supported positive definite radial basis functions,Eng. Anal. Boundary Elements24, 549 (2000).

27. S. J. Liao and S. P. Zhu, Solving Liouville equation with a general boundary element approach, inBoundary
Element Technology, edited by Chen et al. (WIT Press, Southampton, 1999).

28. E. J. Doedel,AUTO 97, Continuation and Bifurcation Software for Ordinary Differential Equations, User’s
Manual (California Institute of Technology, Pasadena, 1997).


	I. INTRODUCTION
	II. THE PARTICULAR SOLUTION METHOD
	III. OSCULATORY INTERPOLATION FOR PARTICULAR SOLUTIONS
	IV. TEST CASES AND RESULTS
	FIG. 1.
	FIG. 2.
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	FIG. 3.
	TABLE V
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.

	V. CONCLUSIONS AND SUMMARY
	ACKNOWLEDGEMENT
	REFERENCES

