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The Method of Fundamental Solution (also known as the F-Trefftz method or
the singularity method) is an efficient numerical method for the solution of Laplace
equation for both two- and three-dimensional problems. In recent years, the method
has also been applied for the solution of Poisson equations by finding the particular
solution to the nonhomogeneous terms. In general, approximate particular solutions
are constructed using the interpolation of the nonhomogeneous terms by the radial
basis functions. The method has been validated in recent papers. This paper presents
an improvement of the solution procedure for such problems. The improvement is
achieved by using radial basis functions called osculatory radial basis functions.
Such functions make use of the normal gradient at boundary to obtain improved
interpolation. The efficacy of the method is demonstrated for some prototypical
nonlinear Poisson problems and for multiple Poisson equationo01 Academic Press

Key Words:method of fundamental solutions; nonlinear Poisson problem; par-
ticular solution method; mesh free methods; radial basis functions; multiquadrics;
osculatory interpolation; Hermite interpolation; diffusion-reaction equations; Liou-
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I. INTRODUCTION

The Poisson equatio®?u = f (x, u), wherex is the position vector and the depen-
dent variable, is encountered in a variety of modeling situations in heat, momentum,
mass transfer, among others. Other examples of Poisson type of equations in computat
physics include the Liouville equation, Chandrasekhar—Wares equation, Emden equeé
in astrophysics, geometry of conformal metrics, and so forth. The use of conventio
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2 BALAKRISHNAN AND RAMACHANDRAN

numerical methods to solve such problems, viz., finite differences or finite elements,
volve discretizing the entire domain of interest. For nonregular geometries, the proces
element or grid generation and the associated bookkeeping of the elements and node
prove cumbersome and expensive in the user time and the CPU time, especially for th
dimensional (or higher) problems. Hence, in the past decade, there has been conside
interest to develop mesh-free methods to solve the nonlinear Poisson equation. Most c
mon among these mesh-free methods is the dual-reciprocity boundary element methc
DRBEM as an abbreviation (for example, 1-4). Here, the problem is reduced to the solus
of the Laplace equation by finding approximate particular solutions to the nonhomogene
terms. The Laplace equation, in turn, can be solved by a boundary-only discretization u:
the boundary element methods (BEM). The BEM, in turn, requires the evaluation of
singular integrals along the boundary. These singular integrations are easy to perform
two-dimensional problems but can be computationally expensive for the three-dimensic
case. As an alternative, one can adopt a solution procedure callétethed of Funda-
mental Solutions (MFSp solve the Laplace part of the problem. The MFS belongs ti
the general class of boundary collocation methods [5], and in this procedure, the solu
is represented as a set of single layer potentials emanating from “source” points locs
outside the solution domain. The boundary conditions are satisfied by simple bound
collocation or a least square fitting of the boundary data. In this procedure, one avoids
problem of evaluation of the singular integrals needed in the boundary element method
in the dual-reciprocity methods. Hence, the procedure is computationally more efficis
than the DRBEM. Some pertinent prior references on the MFS method are summarize
the following paragraph.

The Method of Fundamental Solutions (MFS) has been extensively applied for the
lution of the linear partial differential equations. Some key references include the Laple
equation [6], the biharmonic equations [7], elasticity [8], fluid mechanics [9], and the line
diffusion reaction equations [10]. The method was also applied to the solution of nont
mogeneous linear Poisson equations (for examiple, f (x) by combining the MFS with
the particular solutions to the nonhomogeneous terms [11]. The particualr solutions
be evaluated analytically for certain forms of the functidn= f (x). More recently, the
method has also been extended to solve a nonlinear Poisson problem (the thermal e;
sion problem) by Chen [12] using the approximate particular solutions and a simple Pic
iteration to handle the iterations needed for the nonlinear terms. The solution scheme
nonlinear problems was improved by Balakrishnan and Ramachandran [13] who introdu
the concept of a Matrix of Particular Solutions. Improved iterations with the direct Newtol
Raphson method could be done by this approach and the applicability of the method
large class of nonlinear Poisson problems was demonstrated [13]. These studies [12
used the interpolation using the radial basis functions (RBF) for the representation of
Poisson terms and for the evaluation of the particular solution. The RBF interpolation u
only the function values at chosen points in the domain called as the knots or the cent
Additional information on the values of the normal gradient at the boundary is available
needs to be computed in most cases as the part of the solution for these classes of |
lems. The RBF approximation can be improved by using these information on the norr
gradients. This concept was introduced by Ramachandran and Karur [14] in the con
of the dual-reciprocity boundary element method, and the basis functions which alsc
the boundary values of the normal gradients were referred to as the osculatory radial k
functions (ORBF). The concept can be viewed as an extension of the familiar spline fitt
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or the Hermite interpolation commonly used in one-dimensional data fitting. The ORB
provide additional degrees of freedom, thereby permitting a more accurate interpolatior
the same number of interior knots. The purpose of the present paper is to demonstrat
ORBF interpolation in the context of the MFS for nonlinear Poisson problems and to do
ment the improvements in the solution as a result of using this approach. The layout of
paper is as follows. In Section Il, a brief synopsis of the Method of Fundamental Solutic
for nonlinear Poisson problems is presented in order to provide the necessary backgrc
In Section Ill, we present the concept of osculatory interpolation and its implementatior
the method of fundamental solution. Results for nonlinear Poisson problems with unifc
and mixed boundary conditions are presented in Section IV, and the concluding Sectic
summarizes the key findings.

Il. THE PARTICULAR SOLUTION METHOD

Consider the Poisson equation, to be solved over a dofa@irkR? or R® with enclosing
boundaryl,

Vau=f(x,y,zu) inQ (1)

with the following mixed boundary conditions imposed over the bouné&ary
Dirichlet:

u=u overl'; (2a)

Neumann:

au _

— =p= overly, 2b

an—P=P 2 (2b)

wherel'; + ', = T" and the bar denotes prescribed values.

Also, the more general case of Robin boundary conditions can also be considered witl
au

an +hu= —hu, overl'y, (2¢)

whereh is the heat/mass transfer coefficient, andis the prescribed value af of the
surroundings. This boundary condition needs only minor modifications to the soluti
scheme.

In the method of particular solutions, the solution is expressed as the sum of the hom
nous problem with a set of modified boundary conditions and a particular solution whi
satisfies no specific boundary conditions, i.e.,

Uu=v+w, (3
where the function satisfies the Laplace equation,
Vy=0 ingQ, (4)
and the functiorw is a particular solution defined as the solution to

Viw=f inQ. (5)
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Thus, the problem is solved by using two separate approximationsiodw as suggested
by Eg. (3). The solution to the homogeneous payican be obtained by the method of
fundamental solutions. Heteis expressed as,

nb
UZZaiGh (6)
i=1

whereG; is the fundamental solution to the Laplace equation with the pole or source loca
at a pointi (which is outside the domain under consideration). The coefficagr@ie found
by boundary collocation, i.e., making Eq. (6) satisfy the (modified) boundary condition «
the variablev atnb number of boundary points. The fundamental soluti@nsre standard
and are given as follows: For three-dimensional proble®jss= r, ! corresponding to the
source poini, wherer; is the Euclidean distance from the source (or pole§imilarly,
Gj = — Inr; for two-dimensional problems.

A slight modification is needed for two-dimensional problems. Herea ttenstant term
is needed in the expansion as pointed out by Golberg and Chen [11]. Hence, the numb
source points is taken as one less than the number of boundary collocation points anc
solution forv is represented as

nb—1

v=a+ Y aG;. (6a)
i=1

The next part of the approximation is to evaluate the particular solutiorin order to
do this, the forcing functiorf is approximated ovef2 using suitable basis functions. For
irregular geometry, the radial basis functions (RBF) have proven to be most versatile
interpolation at scattered data points. A number of different types of RBFs have been u
in the context of solution of partial differential equations [15-21]. These include line:
distance functions, thin plate splines, multiquadrics, and RBFs with compact supports
general, the interpolation of the nonhomogeneous teimterms of a set of RBF functions
¢k can be defined as

nt
f = Z axdx, (7)
k=1

whereay are a set of expansion coefficients obtained by interpolating at a tatéhofles
in accordance to the following equation

nt
k=1

wheregji is the functionpy evaluated at any poirjt The corresponding matrix denoted as
¢ is also know as the interpolation matrix.
Equation (8) can be expressed in vector—matrix from,

f=&a or a=0d1f, (9)

which provides the conditions needed for the calculation of the expansion conatants,
The particular solutiony which satisfies Eq. (5), is obtained from the particular solution:
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to each of thepy functions, and can be expressed as

nt
w=> o, (10)
k=1
whereyy is given by
VY = ¢ (11)

The explicit analytical forms fory, can be evaluated for various types of RBE This
makes the computation of the approximate particular solutions a simple task.

Now, since the solutiom = v + w for computational efficiency, the two parts of the
solution can be combined, and the composite solution can be expressed as

nb nt
u=>Y aGi+» ok (13)
i—1 k=1

Using the inverse transformation in Eqg. (9) and collocating at all the (nt) points one c
rewrite this equation in vector form as

d1f (14)

=1}

u=Ga+
or

i=Ga+ff, (15)

|

where = /¢! is called the Matrix of Particular Solutions. Equation (15) is then the
compact approximate analytical representation of the solution. The mafieesly are
defined in an analogous manner as the matrix

For a Dirichlet problem, one chooseB collocation points on the boundaFyandnt-nb
interior points andhb (notenb-1 in 2D) source points outside the boundary. The boundar
conditions are substituted into Eqg. (15) and the equations are rearranged and solved fc
unknowns. These unknowns are the boundary fitting coefficient vexgtand the value of
the variablau at the interior points. The resulting equations are nonlinefitsfa nonlinear
function ofu and are solved by a modified Newton—Raphson iteration. If at certain bound:
points, the Neumann conditions are specified, then Eq. (15) is differentiated to obtair
expression fofu/an. The known value ofu/an is substituted for these points, and the se
of equations are correspondingly augmented since the valuesafiso an unknown at this
point. More details of the method can be found in [13]. We now proceed to the discuss
of osculatory interpolation and its implementation in the above formulation.

IIl. OSCULATORY INTERPOLATION FOR PARTICULAR SOLUTIONS

Ramachandran and Karur [14] introduced the concept of osculatory interpolation us
radial basis function. Here the interpolation of the functfas carried out using not only the
nodal values of the dependent variable but also the normal gradient at the boundaries.
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requirembadditional degrees of freedom for satisfying the slope conditions attheun-
dary points. The interpolating equations for the forcing functfois now written as

nt nb
f= Z axpk + Z Sk (16)
k=1 k=1

where the additional set of interpolating functiong which are linearly independent of
¢x, are introduced, anéd are the corresponding additional interpolating coefficients. Th
linear independence between the two functigpgind ¢k is needed since both the inter-
polating and osculating conditions are applied at the same boundary point. The resul
matrices are found to be nonsingular if the two functions are chosen as linearly in
pendent. The osculatory interpolation is also known as the Hermite interpolation. T
theory of Hermite interpolation using RBF is however not well established and only lir
ited studies appear to have been published [22—-24]. In these studies, the osculatory
interpolatory conditions are applied at different points and hence two separate set:
functions are not required. More theoretical basis for Hermite interpolation and, in p
ticular, the invertability of the coefficient matrix (the matrix appearing in Eq. 19 later i
the text) should be examined in future studies. In this paper we demonstrate the us
this method only by computational experiments and not on a functional analysis fran
work.

The coefficientsy andsy are in Eq. (16) computed using both interpolation and osculatio
conditions as discussed below. At all the interpolating nodes (boundary and interior),
setf = fj, the nodal value of the forcing function, i.e.,

nt nb
fi — Z¢ikak+z(pik8k (I =1 2, ...nb. (17)
k=1 k=1

At all the nb boundary points, the additional osculation conditions are imposed, i.e.,

nt

af <8¢k) nb (a<pk) .
— | = — | ok + — & (=12... nb) (18)
on|; g on J; ; on J;

The equations can be setup in matrix form as shown below in Eq. (19) and the coefficie
ok anddg are given by Eq. (20):

-6 90
DI

This gives us the requisite coefficients for the interpolation scheme. Note that in the ab
equations the symbokepresents the normal derivative at the boundary points.

The particular solutions for the osculation interpolation can be defined in terms of t\
functions,y, n, satisfying

V3 = ¢« (21)
V2K = ¢k (22)



METHOD OF FUNDAMENTAL SOLUTION 7

The solution to the problem is now given by,

nb nt nb
u=> aGi+ > vxax+ Y md. (23)
i=1 k=1 k=1
and the normal gradient is given by
o aG. dY D1k
=n Z ;3” k+kz:mgk (24)

Substituting fore, andsy from Eqg. (20), we get the required collocation equations,

. ~ o\ -1
(‘j>: 5+V ](? *f) <f> (25)
p v\ @ f/

Equation (25) is now the representation of the solution when using the ORBF for ct
structing the particular solution and now replaces Eq. (15). Note that the function value
all points (boundarw- interior) and the normal gradients at the boundary points are no
included in the computation.

For solution purposes, the nonlinear tefnis expressed in a quasilinear forka,+ kou,
where, the

G
é/

df
I(1 = f(um) - umﬁ

Um

df

ko = —
2 du|,

whereun, is the value ofi at the current level of iteration. The linearized form is substitute
into Eq. (25) and the system of linear equations is solved iteratively to convergence. M
details of the procedure can be found in Ramachandran and Karur, [14]. The proce(
is similar to a Newton—Raphson method. For any given problem, the equations far the
nodal values ofi andnb normal gradients at the boundary are assembled and solved
the unknown coefficients; and the unspecified boundary valuesiaind fluxesp and in
addition the (t-nb) interior values ofi. Note that the boundary gradients (at the Dirichlet
points) are directly calculated as a part of the solution and not in a postprocessing sch
unlike the earlier method. The test cases and results for a few prototypical problems
now be discussed in the next section.

The solution accuracy often depends on the choice of the RBFs. A number of paf
have addressed this issue but there is no clear consensus on the choice of the func
Multiquadrics have been used for many applications and was used in our earlier study \
unaugmented RBFs [13]. However, the results are often sensitive to the choice of the ¢
parameter. Hence, we used the thin plate splines and the cubic function as the RBFs |
These functions are defined below:

Thin plate splineg; = r2log(r)
Cubic:g; =r3
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The corresponding particular solutions are as follows:
Particular solutions for the cubic RBF)r

r5
n = 2_5
Particular solutions for Thin Plate Spline$ (0g r)

1p'_r“logr ﬁ
"7 16 32

Other choices of RBFs could also be made and often the choice is dependent on
nature of the function being interpolated. A recent study [25] indicates that cubic functi
and higher order TPS may be a reasonable choice for a wide range of problems. Also.
use of compactly supported RBFs is also being used [26] and these functions could als
used for the interpolation. Further studies should address these issues.

IV. TEST CASES AND RESULTS

In this section we demonstrate the efficacy of the solution procedure discussed earlie
Section Il for some typical problems. The governing equation is chosen as: a power |
form: f(u) = M2u" for test case 1, and more complex kinetic rate forms are examine
in case 2. Uniform Dirichlet boundary conditions are used for these cases. The solut
procedure for a mixed boundary conditions is tested in Case 3 for a power law rate fo
Case 4 shows the application of the method to a system of differential equations. In these
cases, a simple circular geometry is used, and this geometry is sufficiently representati
demonstrate the grid free nature of the method. However, in order to show the applica
for a more irregular geometry, the case of a trilobe catalyst is considered in test case #

For test cases 1 to 4, the circle radius is chosen as 1.0 and the 16 boundary nodes, a
interior nodes were used as the base case for the discretization. The location of the n
is shown in Fig. 1. The number of boundary nodes were increased to 32 for a finer
of collocation points, and the internal nodes were also correspondingly increased to
These results on a finer set of nodes were used to demonstrate the discretization error
the convergence of the method. The finer mesh used is shown schematically in Fig. 2.

The source points were placed on a circle of radius 1.4 in a uniform manner. The source
dius was also varied in order to test the effect of this parameter of the solution. It was founc
general, that the results are not sensitive to the source radius within a wide range of 1.4 to

Case 1: Power Law form: Dirichlet Conditions

The functionf (u) = M2u" is used in cases 1 and 3. Here, the paramfeiis called
the Thiele modulus in chemical engineering literature and represents the ratio of kineti
transport resistances in the domain. The larger the Thiele modulus, the steeper the profil
the dependent variable, and for very large Thiele moduli, a boundary layer with a thickn
of the order of(1/M) is present. In such cases, traditional methods, such as finite elemel
require a fine discretization of the region near the boundary layer for increased accur
Here we demonstrate that even a coarse mesh can provide reasonably accurate results
osculatory interpolation is used.
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FIG. 1. Coarse node placement for the circle.

Case la: Power Law: first order caga = 1)

We first consider a first-order reaction £ 1) with Dirichlet boundary conditions for

which case an analytical solution is available, viz.,
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FIG. 2. Fine node placement for the circle.
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TABLE |
Solution for n = 1,M = 100; Comparison of Accuracy
of Numerical Results

Concentration Profiles
TPS Coarse Set

Locationr  Coarse Set Fine Set Analytical No Osculation
0.9 0.3936 0.3895 0.3884 0.3853
0.7 0.0714 0.0621 0.0599 0.0662
0.5 0.0112 0.0094 0.0097 0.0111
0.25 0.0014 L6 x 104 0.0017 0.0019
0.0 5x 10 2x10* 355x10* 1.35x 10
Gradient at 9.5634 9.4935 9.486 9.6596
x=1
au M 1 (Mr
ou_ MLMMO - (28)
an lo(M)

The comparison of the solutions are shown in Table | along with those without osculat
interpolation using TPS. As one can see, the gradient values using osculatory interpola
are more accurate than with traditional RBF interpolation. The concentration values

also shown in Table | and compared with an analytical solution. The source points in t
case were placed on a circle center (0, 0) and radius 1.4. The source radius was also v
in order to test the effect of this parameter of the solution. It was found that the results

not sensitive to the source radius as indicated earlier in the text.

Case 1b: Power Law: Second order reactign= 2)

The case of second-order reaction£ 2) is considered next and the results are presente
in Table Il. Here the solution is compared with the numerical solution by a 1-D code BEM1
(Ramachandran, [2]) which is considered to be very accurate for comparison purposes.
seen that both the concentration profiles and the fluxes are close to the BEM1D solution.
use of regular TPS without osculation predicted the same concentration profiles but predi
the flux with an error of about 6%. This shows some advantage of using the osculat

TABLE Il
Results for a Second-order i = 2) Reaction,M = 100

TPS Coarse Set
Coarse Set Fine Set BEMID Values No Osculation
X Concentration Values
0.90 0.5486 0.5289 0.5235 0.5230
0.70 0.2713 0.2480 0.2260 0.2494
0.50 0.1458 0.1258 0.1335 0.1423
0.25 0.0962 0.0783 0.0916 0.0991
0.00 0.0800 0.0689 0.0803 0.0846
Gradient at 7.8564 7.7264 7.7525 8.1459

x=1
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TABLE 11l
Solutions for Exponential and Substrate Inhibited Rate forms;
Dirichlet Conditions

Rate form—  Liouville equation  Thermal explosion Substrate inhibition
Locations f=5 exp(u) f=—exp(u—1) f = 1040y/(1 + 50u+ 1000tf)
uatr=0.9 0.8589 1.0568 0.9438
uatr=0.7 0.5964 1.1559 0.8445
uatr=0.0 0.1127 1.3176 0.6796
patr=1.0 1.4332 —0.5900 0.5821

interpolation. In most problems, the information on the boundary gradients is needed
the method proposed here calculates these quantities directly as part of the solution.

Case 2: Dirichlet Conditions: Complex Rate Models

The computer program was also tested for various nonlinear rate forms which are s
prototypical problems in physics and engineering. Results for the following three cases
presented in Table Ill. For all cases, the source points were on a circle center (0, 0) ra
1.4 and the node placements shown in Fig. 1 were used in the computations. The parar
values were chosen so that comparison with other numerical method could be done.

Case 2.1: Liouville equation.Here the rate function is chosen as

2

f= %exp(—u). (29)

This equation is encountered in many physical situations. Hére; 40 was used for
numerical studies. The results shown in Table 11l were compared to an earlier study by L
and Zhu [27] and the agreement was verified.

Case 2.2: Thermal explosion problem:
f = —explu-—1). (30)

This represents a situation with an exponentially increasing thermal source in a confi
space and the solution to this problem is needed for a safe design of combustion and «
exothermic processes. The numerical results are in agreement with other computed re

Case 3: Substrate inhibition kinetics:
f(u) = M2u/(1+ au + u?). (31)

This problem is a representation of enzyme catalyzed biochemical reaction. The param
chosen wereM? = 1040, « = 50, andp = 1000, and the problem has multiple steady
states here. The results shown in Table IV reproduced one of the steady states accur
Bifurcation studies using this method in combination with programs for continuation a
bifurcation analysis such as AUTO [28] can be done to check if all the steady states
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TABLE IV
Gradient and Concentration Values along the Boundary
for Test Case #3n = 2,M = 100

Angular Location Fine Set Coarse Set

Case 1: Gradient Values

0.0982 5.198

0.1963 4.41856 4.5046
0.2945 3.6392

0.4909 3.7296

0.589 3.7042 3.5598
0.6872 3.6787

Case 2: Concentration Values

1.669 0.4534

1.7671 0.3589 0.3557
1.8653 0.2644

2.0617 0.2022

2.1598 0.1899 0.1807
2.258 0.1775

2 Interpolated values.

predicted by this numerical scheme. We have not performed such studies and the r
detailed bifurcation analysis are considered outside the theme of this paper.

Case 3: Mixed Boundary Conditions

Case 3 demonstrates the application of the method for a nonlinear forcing function
the power law type (&= 2) with Dirichlet and Neumann boundary conditions imposed ove
various parts of the perimeter. Here is a unit circle considered with Dirichlet conditio
(u=1) are imposed over the first and third quadrants and Neumann conditien8)(pre
imposed over the rest of the perimeter. It is to be noted that at the junction of the Dirich
and Neumann boundaries, the flux is undefined and increases rapidly and is singul
the junction. Representative profiles wffor a Thiele modulus of 5.0 are shown for the
geometry of a circle in Fig. 3 for the mixed boundary conditions. The profiles qualitative
agree with those expected and agree well with other solution methods. To determine
convergence of the scheme, the results are presented for both the coarse and fine ¢
collocation points in Table IV. The solutions calculated by these two sets of nodes
fairly close to each other, indicating the convergence of the procedure. As a further t
solutions were also evaluated at interior noncollocation points and compared to each o
The mean square error over 71 interior noncollocation points was 0.006.and1®~°
between the two successive refinements, which is indicative of the convergence of
scheme.

Case 4: Multiple Differential Equations

To illustrate the efficacy of the procedure for a system of nonlinear equations, we consi
the hypothetical reaction scheme,

k1 k3
A& BsC,
ko [
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1

FIG.3. Concentration profiles for a second order reactienZ5.7 with mixed boundary conditions (Case 3).

where the reversible reactions betweeandB are assumed to be second order and the re
action fromB to C is assumed to be first order. The governing equations for the independ
speciesA, B, andC (designated as 1, 2, and 3) are given by

VZU]_ = k1U§ — kgug (32)
VZUZ = KksU, + k2u§ — klui — Kkaus (33)
V2U3 = k4U3 — k3LI2. (34)

The values of the constants for a chosen simulation wete 5.0, k, = 1.0, ks = 5.0, and

ks = 3.0 and the results are shown in Table V. The solution procedure adopted was to s
the individual diffusion reaction equations sequentially, with a Newton—Raphson iterat
for each variable. An initial guess fok is used to start of the solution of the equation for
A, and the values afy, Uy, uz are updated with each iteration until convergence is obtaine
(change in sum of the squared errdte-9). It may be noted here that the sequential solutior
procedure used may not be the best method for the multiple set of algebraic equations
may not converge in all cases. More efficient convergence schemes can be used but oL
jective here was to see how the particular solution method works for a system of differen
equations. This has not been done in any of the earlier studies. The results indicated
the method is equally accurate for multiple differential equations of the Poisson type.
approximate particular solution for each individual reactions are dependent on each o
but this coupling appears to produce no spurious numerical problems.

Case 5: Nonregular Geometries

In this case, we demonstrate the efficacy of the method for solving nonlinear problem
nonregular domains. We consider the example of a trilobe, shown in Fig. 4. In the simulat
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TABLE V
Results of Multiple Reactions (Case 4) with Mixed (D-N)
Boundary Conditions as in Case 3

Boundary Values A B C
patd =0 1.5645 —0.2398 —1.3248
patd =nr/8 1.1123 —0.2337 —0.8786
C at(0,0) 0.5743 1.0034 1.4223

studies, only a third of the trilobe is interpolated in view of the symmetry of the domain.
may be noted that splitting the domain into one third does not eliminate the singularity
the cusp but is merely a convenience for keeping the number of knots small. The two ce
we consider are as follows:

(i) Dirichlet—concentration of 1.0 all over the perimeter, (Fig. 5)

(ii) Dirichlet-Neumann—concentration of 1.0 over some part of the perimeter and
flux over the remainder of the perimeter. (Figure 5, with Neumann conditions imposed fr
point A to point B)

The source points were located at distance of 0.3 from each boundary collocation pc
The concentration profiles for each case with a value ef B10 for a second-order reaction
are shown in Figs. 6 and 7, which agree qualitatively with those expected.

This study illustrates a case where the geometry is complex and the results den
strate that the procedure works well for this case thus indicating the usefulness of
method.

-0.5 0 0.5 1 1.5 2 2.5

FIG. 4. lllustration of a nonregular geometry—a trilobe (Case 5).
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" 4:0 " "
-1 0.5 0 0.5 1

FIG.5. Node placementand boundary conditions on a cusp of the trilobe for the case when Dirichlet bounc
conditions are imposed all over the surface of the trilobe.

1

FIG.6. Concentration profiles for a trilobe with Dirichlet boundary conditions (one cusp shown) for a seco
order reaction (&= 97).
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FIG. 7. Concentration profiles for a trilobe with mixed boundary conditions (one cusp shown) for a seco
order reaction (f= 9P).

V. CONCLUSIONS AND SUMMARY

In this paper, we present an extension of a grid-free solution technique, called the Met
of Fundamental Solutions, for solving nonlinear Poisson problems. The solution mett
presented here uses a set of nodes in the interior in order to interpolate the function val
It may be noted that this interpolation is needed only for the purpose of obtaining
approximate particular solution. Thus, there is no need to approximate any differen
operators (second derivatives for the problem presented here) in the interior, and he
one source of error associated with the finite difference and finite elements is elimina
Further, the nodes can be distributed in any order in the interior and no special bookkeg,
or tracking of inter-element continuity is needed, another advantage of the method. Once
particular solution is obtained, the problem is reduced to a boundary collocation probile
This problem is solved by choosing a set of boundary collocation nodes and a correspon
set of source nodes which are placed outside the domain of solution. The set of colloca
equations are then written for all the function values at the internal and boundary node
well as for the normal gradients at the boundary collocation points. One of the improveme
in this paper is that the normal gradient values are also included in the interpolation of
function which is then referred to as the osculatory or Hermite interpolation. The osculat
is similar to a spline fitting and permits the function to take the correct slope at each
the boundary collocation points. This increases the accuracy of the solution. The accu
has been demonstrated for a number of test problems. The test problems include sys
with a complex geometry and a case of mixed boundary conditions. Further, the met
has been applied for the first time for the solution a system of differential equations, ¢
the results are satisfactory. For the solution of problems with larger complex domain,
method can be easily used in conjunction with the domain decomposition. The dom
decomposition will be very effective here since many of the matrix coefficients (associa
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with, for example, the matrix of a particular solution) can be used in various subdomai
Further, although the results presented in this paper are for two-dimensional problems
method is directly applicable to 3-D or even higher dimensions. The only changes art
the expressions for the fundamental solution and for the form of the particular soluti
as indicated in the text. Thus, the computer programs for implementing the methoc
independent of the dimensionality of the problem which is a unique feature of this meth
The method is also easy to implement in the context of multinode iterative schemes.
the particular solution can be extrapolated from the coarse node level to the fine node Ie
Thus, corrections at the finer node levels can be done only on the boundary colloca
points which requires a solution of a smaller set of linear algebraic equations. In view
the many advantage, the use of the method presented in this paper to a variety of impo
application problems can be expected in the future.
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